Remarks on the ill-posedness of the Prandtl equation

نویسندگان

  • David Gérard-Varet
  • Toàn Nguyên
چکیده

In the lines of the recent paper [5], we establish various ill-posedness results for the Prandtl equation. By considering perturbations of stationary shear flows, we show that for some linearizations of the Prandtl equation and some C∞ initial data, local in time C∞ solutions do not exist. At the nonlinear level, we prove that if a flow exists in the Sobolev setting, it cannot be Lipschitz continuous. Besides ill-posedness in time, we also establish some ill-posedness in space, that casts some light on the results obtained by Oleinik for monotonic data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Prandtl Boundary Layers

Abstract. This note concerns a nonlinear ill-posedness of the Prandtl equation and an invalidity of asymptotic boundary-layer expansions of incompressible fluid flows near a solid boundary. Our analysis is built upon recent remarkable linear ill-posedness results established by Gérard-Varet and Dormy [2], and an analysis in Guo and Tice [5]. We show that the asymptotic boundary-layer expansion ...

متن کامل

On the ill-posedness of the Prandtl equation

The concern of this paper is the Cauchy problem for the Prandtl equation. This problem is known to be well-posed for analytic data [13, 10], or for data with monotonicity properties [11, 15]. We prove here that it is linearly ill-posed in Sobolev type spaces. The key of the analysis is the construction, at high tangential frequencies, of unstable quasimodes for the linearization around solution...

متن کامل

On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces

In this paper, we study ill-posedness concepts of nonlinear and linear inverse problems in a Hilbert space setting. We deene local ill-posedness of a nonlinear operator equation F(x) = y 0 in a solution point x 0 and the interplay between the nonlinear problem and its linearization using the Fr echet derivative F 0 (x 0). To nd an appropriate ill-posedness concept for 1 the linearized equation ...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Note on the Euler Equations in C Spaces

In this note, using the ideas from our recent article [2], we prove strong ill-posedness for the 2D Euler equations in C spaces. This note provides a significantly shorter proof of many of the main results in [1]. In the case k > 1 we show the existence of initial data for which the kth derivative of the velocity field develops a logarithmic singularity immediately. The strong ill-posedness cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2012